
Tetrahedron Letters 49 (2008) 5816–5819
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate / tet let
Synthesis and properties of naphthalene trimers linked
by 1,3,4-oxadiazole spacers

Katsuhiko Ono a,*, Hiroki Ito a, Akihiro Nakashima a, Mariko Uemoto a, Masaaki Tomura b, Katsuhiro Saito a

a Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
b Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 June 2008
Revised 22 July 2008
Accepted 23 July 2008
Available online 26 July 2008

Keywords:
p-Conjugation
Molecular aggregation
Naphthalene
Oxadiazole
Regioisomer
0040-4039/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.tetlet.2008.07.122

* Corresponding author. Tel./fax: +81 52 735 5407.
E-mail address: ono.katsuhiko@nitech.ac.jp (K. On
Two types of naphthalene trimers linked by 1,3,4-oxadiazole spacers were synthesized and investigated
for their physical and electronic properties. 2,6- and 2,7-isomers on central naphthalene moieties were
obtained in the forms of pale yellow solids and colorless crystals, respectively. The melting point of
the 2,6-isomer was higher than that of the 2,7-isomer. An X-ray crystallographic analysis revealed a p-
stacked column with a short intermolecular distance in the crystals of the 2,6-isomer. The absorption
maximum of the 2,6-isomer was red-shifted as compared to that of the 2,7-isomer, indicating a p-con-
jugation between di-2-naphthyloxadiazole moieties in the 2,6-isomer. The quantum yields of the
2,6- and 2,7-isomers were measured to be 0.97 and 0.74, relative to that of 2,5-di-2-naphthyl-1,3,4-oxa-
diazole (0.85). Molecular orbital (MO) calculations demonstrated that the 2,6-isomer had a higher elec-
tron affinity than the 2,7-isomer. Thus, the crosslinking of building blocks is important for the design of
functional materials.

� 2008 Elsevier Ltd. All rights reserved.
1,3,4-Oxadiazole derivatives are highly attractive compounds in
the research and development of materials for organic electrolumi-
nescent (EL) devices1 since these compounds possess high elec-
tron-accepting properties and exhibit strong fluorescence with
high quantum yields. The quantum yields of 2,5-diphenyl-1,3,4-
oxadiazole and 2,5-di-2-naphthyl-1,3,4-oxadiazole (1) were re-
ported to be 0.80 and 0.85 in cyclohexane solutions, respectively.2

Thus, compounds involving 1,3,4-oxadiazole rings have been used
as electron-transporting materials1 and emitters3 in organic EL de-
vices. 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole
(PBD) is one of the well-known electron-transporting materials.4

This p-electron system has been modified to produce spiro-
shaped5 and star-shaped structures,6 which formed amorphous
films with high glass transition temperatures. We synthesized
macrocyclic and acyclic bis(2,5-diphenyl-1,3,4-oxadiazole)s (2
and 3) and investigated their carrier-transporting properties dur-
ing the study of organic EL devices.7 The EL performance of a device
using 3 as an electron-transporting layer was considerably higher
than that of a device with 2, although the electronic properties of
2 and 3 were similar to each other. This result was attributed to
their molecular structures and aggregations in the solids.
Compound 3 had a linear molecular structure and no strong inter-
molecular interactions were observed in the crystals. The high
ll rights reserved.

o).
hole-blocking ability of 3 led to an effective recombination be-
tween the holes and electrons at emitting layers. Recently, 1,3,4-
oxadiazole dimers linked by aromatic spacers were prepared as
linear liquid crystal molecules and a relationship between their
thermal properties and molecular structures was reported.8 With
regard to this, we synthesized naphthalene trimers linked by
1,3,4-oxadiazole spacers (4 and 5) in order to investigate the prop-
erties of linear p-electron systems involving 1,3,4-oxadiazole rings
(Fig. 1). The differences between regioisomers 4 and 5 exist in
terms of their melting points, absorption and emission maxima,
quantum yields, and crystal packings. In this Letter, we report
the synthesis, spectral and electrochemical studies, and crystallo-
graphic analyses of 4 and 5.

The synthesis of oxadiazole derivatives 4 and 5 is illustrated in
Scheme 1. Naphthalenedicarbohydrazides 7a–b were obtained by
the reactions of dimethyl esters 6a–b with hydrazine monohy-
drate.9 Dicarbohydrazides 7a–b reacted with 2-naphthoyl chloride
in refluxing pyridine to afford compounds 8a–b10 that produced 4
and 5 with yields of 39% and 44% by dehydration in refluxing phos-
phorus(V) oxychloride (POCl3), respectively. These compounds
were rarely soluble in common organic solvents although 4 was
slightly soluble in chloroform and dichloromethane. Therefore, 4
and 5 were purified by sublimation at 295 and 350 �C under
10�3 Torr, respectively. The structure determination of 4 was per-
formed using spectroscopic data and an elemental analysis.11 The
structure of 5 was determined by mass spectrometry, IR, and an
elemental analysis.12

mailto:ono.katsuhiko@nitech.ac.jp
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


4

N N

O

NN

O

N N

O

5

O

NN

O

NN

O

N N

O

NN

O

N N

2 31

N N

O

Figure 1. Structure of oxadiazole derivatives 1–5.
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Scheme 1. Synthesis of compounds 4 and 5. Reagents and conditions: (i) hydrazine monohydrate, CHCl3–MeOH (1:1), reflux; (ii) 2-naphthoyl chloride, pyridine, reflux; (iii)
POCl3, reflux.
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The melting points, colors, and absorption maxima of 4 and 5
are summarized in Table 1. According to differential scanning cal-
orimetry (DSC) measurements,13 the melting points of 4 and 5
were considerably higher than the melting point of 1 due to the
extension of p-conjugated systems. Further, the melting point of
5 was higher than that of 4, indicating a dense molecular packing
in the crystals of 5. After melting, the cooling profiles of 4 and 5
Table 1
Melting points, color, and absorption maxima

Compound Mp (�C) Color kmax (loge)a (nm)

4 282.5b Colorless 341 sh (4.57), 321 (4.83),
277 (4.83), 227 (4.85)

5 358.7b Pale yellow 361 sh, 343, 271, 228c

1 194–195 Colorless 339 sh (4.23), 317 (4.51),
267 (4.66), 233 (4.61)

a In CH2Cl2.
b Measured in DSC.
c The molar absorption coefficients were not obtained.
exhibited crystallization temperatures of 230.4 and 306.6 �C,
respectively. Compounds 4 and 5 were obtained in the forms of
colorless crystals and pale yellow solids (Fig. 2). The absorption
spectra of 4 and 5 in dichloromethane are presented in Figure 3.
The longest absorption maximum of 4 was observed at 341 nm.
This value was almost equal to that of 1 (339 nm), suggesting that
the extension of a p-electron system in 4 hardly affects the inter-
action between two di-2-naphthyloxadiazole moieties in terms of
the HOMO–LUMO energy gap. Furthermore, the absorption maxi-
mum of 5 (361 nm) was red-shifted as compared to the maxima
of 4 and 1, indicating a p-conjugation between the two di-2-naph-
thyloxadiazole moieties in 5. These naphthalene trimers exhibited
photoluminescence (PL) in a solution and in a solid state. These PL
data are listed in Table 2. Compounds 4 and 5 exhibited three
emission maxima, which appeared to be a result of the emission
from the building unit based on 1 and the extended p-electron
system. The quantum yields of 4 and 5 in dichloromethane were
measured relative to 1 (UPL = 0.85)2. The quantum yield of 5 was
close to 1. On the other hand, the quantum yield of 4 was lower
than the quantum yields of 5 and 1. These results indicate that



Figure 2. Color of the solids of 4 (a) and 5 (b).

Figure 3. UV–vis absorption spectra.

Table 2
Emission maxima and quantum yields

Compound kem
a (nm) kem, film (nm) UPL

a,b

4 400 sh, 385, 365 402 0.74 ± 0.02
5 420 sh, 394, 373 449, 426 sh 0.97 ± 0.02
1 392 sh, 370, 352 392 sh, 379 0.85

a In CH2Cl2.
b Measured relative to 1, kex = 317 nm.

Figure 4. Crystal structure of 4: (a) molecular stru

Figure 5. Crystal structure of 5: (a) molecular stru
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the orientation between fluorophores affects the emissive charac-
teristics. The fluorescence spectra of 4 and 5 in the solid state were
measured, and their emission maxima are listed in Table 2. The
maxima of 5 are red-shifted as compared to those in the solution
state, although the maxima of 4 and 1 are similar to those in the
solution state. This result was attributed to the strong intermolec-
ular interactions of 5 in the solid state. The cyclic voltammetry (CV)
of 4 in N,N-dimethylformamide (DMF) revealed a quasi-reversible
reduction wave.14 The reduction wave of 5 was not obtained be-
cause of its low solubility. The half-wave reduction potentials of
4 and 1 were observed to be �2.11 and �2.19 V versus Fc/Fc+,
respectively. The reduction potential of 4 was similar to that of 1.

In order to estimate the influence of regioisomers on molecular
orbitals, B3LYP/6-31G(d) calculations15 of compounds 4 and 5
were performed using the coordinates obtained from X-ray crystal-
lographic analyses. The energy of LUMO was lower in 5 than that in
4 (LUMO/eV: 4, �1.92; 5, �2.10). This result indicated that the
p-conjugation between electron-accepting moieties affected their
LUMO energy levels. The energy of HOMO was higher in 5 than
that in 4 (HOMO/eV: 4, �5.94; 5, �5.77). Therefore, the HOMO–
LUMO energy gap of 5 was smaller than that of 4 (gap/eV: 4,
4.02; 5, 3.67). The result is consistent with that of the respective
absorption edges.

The molecular structures of 4 and 5 were investigated by X-ray
crystallographic analyses.16 Single crystals of 4 and 5 were grown
by sublimation. In the crystal, the molecular structure of 4 was al-
most planar and W-shaped (Fig. 4a). The dihedral angle between
the oxadiazole rings and the terminal naphthalene groups was
3.85�. Compound 4 crystallized in the monoclinic C2/c. The
molecules were stacked along the a axis to form a column with
cture; (b) crystal packing; (c) overlap mode.

cture; (b) crystal packing; (c) overlap mode.
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an intermolecular distance of 3.51 Å (Fig. 4b). This value is slightly
longer than the sum of the van der Waals radii of carbon atoms
(C� � �C = 3.40 Å). The molecular stacking was induced by electro-
static intermolecular interactions between the 1,3,4-oxadiazole
rings and the naphthalene moieties (Fig. 4c). The W-shaped molec-
ular structure was preferred over the dense crystal packing. The
molecular structure of 5 was also almost planar and linear (Fig.
5a). The dihedral angle between the oxadiazole rings and the cen-
tral naphthalene moiety was 9.04�. Compound 5 crystallized in the
monoclinic P21/c. The molecules were stacked along the a axis to
form a column with an intermolecular distance of 3.38 Å (Fig.
5b). This value was slightly shorter than the sum of the van der
Waals radii of carbon atoms. The strong molecular overlap is
attributed to the electrostatic p� � �p interactions between the
1,3,4-oxadiazole rings and the naphthalene moieties (Fig. 5c). The
calculated density of 5 was higher than that of 4 (Dc/g cm�3: 4,
1.390; 5, 1.437).

In summary, we synthesized two regioisomers of naphthalene
trimers linked by 1,3,4-oxadiazole spacers (4 and 5). Compounds
4 and 5 were obtained in the forms of colorless crystals and pale
yellow solids, respectively. The melting point of 5 was higher than
that of 4. The X-ray crystallographic analysis of 5 revealed a p-
stacked column with a shorter intermolecular distance than the
sum of the van der Waals radii of carbon atoms. The absorption
maximum of 5 in dichloromethane was red-shifted as compared
to that of 4, indicating the p-conjugation between the two di-2-
naphthyloxadiazole moieties in 5. The quantum yields of 4 and 5
were measured to be 0.74 and 0.97 relative to that of 1 (0.85). Fur-
thermore, 5 has a higher electron affinity than 4. These results
were supported by the HOMO and LUMO energies of 4 and 5 ob-
tained from the MO calculations. These results revealed that the
crosslinking of building blocks is important for the design of func-
tional materials. Because these compounds are candidates for
applications, such as electron-transporting materials in EL devices,
a further investigation of their potential applications is in progress.
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